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Gravity current and dam-break flows, resulting from the instantaneous release of
fluid initially at rest behind a lock gate, are modelled theoretically using the shallow
water equations. By analysing the motion in the hodograph plane, the governing
equations become linear and hence it is possible to integrate them analytically from
lock-release initial conditions. This approach provides many advantages: not only are
numerical computations obviated, but the analysis clearly reveals how the nature of
the ensuing flow depends on the Froude number, Fr, at the front of the current. It is
also demonstrated that the motion comprises uniform and simple wave regions within
which both or one of the characteristic variables are constant, respectively, in addition
to complex wave regions within which both characteristic variables vary. These
solutions reveal phenomena that have not previously been reported for gravity current
flow. Specifically, when Fr> 2, the height and velocity fields become discontinuous at
late times at an interior point within the current. Conversely, when Fr< 2, there is a
wave-like disturbance that propagates along the length of the current, being reflected
successively between the rear wall of the lock and the front of the flow.

1. Introduction
The study of gravity currents, in which relatively dense fluid is introduced into less

dense surroundings, and dam-break flows, in which initially stationary fluid is set into
motion from behind a rapidly removed vertical lock-gate, has a long history (Ritter
1892; von Kármán 1940) and yet they are still a focus of much recent research,
because many aspects of their motion remain incompletely understood. These flows
are important to a wide range of industrial and environmental applications including
the motion of the flood wave following the failure of a constructed dam, the spreading
of relatively dense poisonous gas, the intrusion of saline water through estuaries and
the run-up of bores and swash on beaches. Much of the fascination of these flows
arises from the rich variety of dynamical behaviour that may be exhibited as they
propagate over horizontal boundaries in an unsteady manner from their source, driven
by their excess density.

There have been many theoretical advances in mathematical modelling of the mo-
tion. Simplest approaches employ dimensional reasoning and straightforward integral
models to predict the flow speed as a function of the initial conditions (see, for example,
Huppert & Simpson 1980; Hogg, Hallworth & Huppert 2005). More sophisticated
approaches develop shallow-layer descriptions of the motion, based upon the thinness
of the flows. These resolve some of the interior dynamics, but must be supplemented
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by a semi-empirical dynamic condition at the front of the motion to represent the
unsteady and three-dimensional flow that occurs there (Benjamin 1968; Rottman
& Simpson 1983; Shin, Dalziel & Linden 2004). These shallow-layer models admit
similarity solutions that provide the long-term asymptotics for the motion once the
detailed initial structure of the height and velocity fields are no longer significant, save
for their contribution to the overall buoyancy of the release (Fannelop & Waldman
1972; Hoult 1972; Mathunjwa & Hogg 2006). Finally, some recent investigations
have succeeded in numerically simulating the motion by integrating more complete
three-dimensional models of the motion, thus obviating the need for assumptions
concerning the dominant length scales and dynamic balances within the flow, but at
the cost of lengthy numerical computations (Härtel, Meiburg & Necker 2000).

Many experimental investigations of gravity currents and dam-break flows have
instantaneously released fluid within a flume from behind a vertical lock gate (see,
for example, Huppert & Simpson 1980; Rottman & Simpson 1983; Lauber & Hager
1998). In such experiments the gate is rapidly removed and these lock releases have
proven to be a repeatable means for generating flows within the laboratory that are es-
sentially two-dimensional. Furthermore, although somewhat idealized, such conditions
provide an attractive initial configuration for theoretical considerations. Typically if
resistive forces are negligible, two-dimensional lock-release gravity currents rapidly
accelerate from rest to exhibit a regime in which the front moves at constant velocity,
before decelerating and entering a self-similar regime in which the front position, xN ,
depends upon the time from release to the 2

3
power, t2/3 (Rottman & Simpson 1983).

This paper provides a theoretical study of dam-break flows and of gravity currents
generated by lock releases of relatively dense fluids. We adopt a shallow-layer model
in which resistive forces are negligible and the motion arises from a balance between
the streamwise pressure gradient and the inertia of the fluid. Our key contribution
in this paper is to integrate the nonlinear governing equations analytically and
elucidate the velocity and height fields for the entire motion at all times after the
flow is initiated. This is made possible by adopting a hodograph transformation
of the governing equations that converts the nonlinear system into a linear system.
This means that rather than resorting to numerical computations of the hyperbolic
governing partial differential equations, the flow may be calculated from relatively
simple analytical expressions. Indeed, as described below, our analysis reveals features
of the motion that have not been reported before. We note that the application of
hodograph techniques to the shallow water equations is not new. For example Carrier
& Greenspan (1957) employed the technique to construct nonlinear periodic waves on
a plane beach and recently this was extended to more general wave forms by Carrier,
Wu & Yeh (2003). Kerswell (2005) applied the technique to dam-break releases
of cohesionless granular material. This latter contribution shares the same initial
condition as the fluid flows analysed in this paper, but the boundary conditions are
different. Also Kerswell (2005) showed that these granular flows are rapidly arrested
by frictional forces, whereas fluid flows may propagate over large distances before
being influenced by drag (Hogg & Pritchard 2004).

The hodograph technique applied in this study relies on the hyperbolic character
of the governing equations and that there are two distinct characteristic directions.
An important result is that we may readily find the characteristic curves and the
regions within which the characteristic quantities take constant values (uniform and
simple wave regions). This approach has been undertaken before for these types
of flows: for dam-break flows from a lock of infinite extent, with the leading edge
defined by vanishing flow depth, Ritter (1892) showed that the entire motion was
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readily calculated in terms of a simple wave region; Abbott (1961) extended this
for more general conditions at the front; and Rottman & Simpson (1983) showed
that the characteristics reflect from the rear wall of the lock, propagate forward
to catch up the front and generate regions where both characteristics values vary
(complex wave region). They did not, however, explicitly calculate the characteristic
curves, nor did they attempt to find the long-term behaviour within the complex
wave regions using analytical methods. The flow structure shares some features with
phenomena found in the motion of compressible gases. For example, Stanyukovich
(1960) identifies regions of uniform flow, rarefactions (simple waves) and reflected
waves when a gas, confined within a tube, is allowed to expand by removing a
piston from one end. It should be noted, though, that the boundary condition on
this gas flow at the piston differs from the dynamic condition at the front of gravity
currents and this necessitates the use here of a rather different approach to calculate
the flow. In this study we demonstrate how to compute the structure and form of
the characteristic plane directly and we show how it depends upon the magnitude
of the Froude number at the front of the flow, Fr, which measures the flow speed
relative to the speed of infinitesimal long waves on the surface of the moving fluid.
We note that when the current is propagating through sufficiently deep water, many
investigators have found experimentally that the Froude number adopts a constant
value; for example, Huppert & Simpson (1980) found that Fr = 1.2 for Boussinesq
currents, while for the fronts of ‘classical’ dam-break flows of liquids through air
the height vanishes and this corresponds to Fr → ∞ (Whitham 1974). We will thus
develop the solutions for the motion for all values of the frontal Froude number.

Our aims in this paper are two-fold. First we have constructed the complete
solution for the flow analytically. This obviates the need for numerical calculations,
which have had some difficulties in tracking accurately the motion of the front and
in resolving regions where the height, velocity, or gradients of either of these, are
discontinuous. The new analytical solutions therefore provide an important test-bed
for future numerical codes designed to integrate the shallow water equations. However
the analysis also reveals clearly how the dynamical behaviour depends on Fr and
we find phenomena that have not been reported before. When Fr < 2 we find that
a wave-like disturbance is generated that propagates along the entire current, being
successively reflected between the rear wall and the front of the current. When Fr> 2
we reveal that at relatively late times after release the flow develops an interior
shock over which the velocity and height fields are discontinuous, corresponding to a
propagating bore or internal hydraulic jump.

The study is organized as follows. First we formulate the models and hodograph
transformation that enable the subsequent analysis (§ 2). Next in § 3, we analyse the
initial motion both in terms of the characteristic curves and of the dependent variables.
This indicates where the important features of the characteristic plane are to be found
and reveals why the magnitude of the frontal Froude number is important in determ-
ining the motion. In § 4, we complete the solution for the flow, treating separately the
cases: (i) Fr → ∞; (ii) Fr = 2; (iii) Fr< 2; and (iv) Fr> 2. Finally we summarize and
draw some conclusions in § 5 and draw out the connections between this analysis and
the similarity solutions that provide the intermediate asymptotics for the motion.

2. Formulation
We analyse the two-dimensional motion of incompressible relatively dense fluid

through a less dense surrounding ambient fluid, along a rigid horizontal boundary.
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The streamwise length scale of the motion is assumed to be much greater than
the depth of the intruding current, so that vertical fluid accelerations are negligible
and the pressure is hydrostatic to leading order. With the further assumptions that
resistive forces may be neglected and that the current does not mix with the ambient,
the motion may be modelled by the shallow water equations (Whitham 1974). Thus
aligning the x-axis with the direction of propagation and denoting the flow depth and
velocity by h and u, respectively, we find that

∂h

∂t
+

∂

∂x
(uh) = 0, (2.1)

∂u

∂t
+ u

∂u

∂x
+ g′ ∂h

∂x
= 0, (2.2)

where g′ = (ρ − ρa)g/ρ is the reduced gravity and ρ and ρa are the densities
of the intruding and ambient fluids, respectively. These single-layer shallow water
equations have been employed to model gravity current motion in a wide variety of
contexts (see, for example, Hoult 1972; Rottman & Simpson 1983; Hallworth, Hogg
& Huppert 1998), as well as wave and dam-break flows (see, for example, Peregrine
1972; Whitham 1974; Hogg & Pritchard 2004; Pritchard & Hogg 2005). We note
that if the depth of the current is comparable with the depth of the ambient fluid
through which it flows, then the motion of the ambient cannot be neglected. In this
case two-layer shallow water equations may be formulated to model separately mass
and streamwise momentum evolution within in each layer, while the pressure remains
hydrostatic throughout the flow (see, for example, Rottman & Simpson 1983; Hogg
et al. 2005 and Ungarish & Zemach 2005).

We investigate the motion from ‘lock-release’ initial conditions. These correspond
to an initially stationary layer of dense fluid behind a vertical lock-gate, located at
x = x0, that is instantaneously removed at t = 0 to generate the flow. Such initial
configurations are readily generated in the laboratory and have formed an important
configuration for the experimental testing of the behaviour of the flows (Huppert &
Simpson 1980; Rottman & Simpson 1983; Shin et al. 2004). Furthermore these are
the initial conditions for dam-break flows, which are an important phenomenon in
hydraulic engineering and which have formed an important test of numerical com-
putations of the flow. These initial conditions are given by

h = h0 and u = 0 for 0 � x � x0. (2.3)

Finally the model is completed by the specification of boundary conditions. At the
rear of the lock there is an impermeable wall and thus

u = 0 at x = 0. (2.4)

At the front of the current we impose a dynamic condition

u = Fr
(
g′h

)1/2
at x = xN (t), (2.5)

where Fr is a constant, together with the condition of kinematic consistency that

u =
dxN

dt
at x = xN (t). (2.6)

Expression (2.5) is termed the Froude number condition and demands that the ratio
at the front of the current of the flow speed to the speed of infinitesimal long
waves on the surface of the layer is constant. Such a condition is required because
around the front of a gravity current there may be significant vertical fluid motions
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and so the shallow-water description is no longer appropriate. The Froude number
condition has been studied theoretically by Benjamin (1968) and Shin et al. (2004) and
experimentally by a number of investigators including Huppert & Simpson (1980),
Grobelbauer, Fannelop & Britter (1993), Shin et al. (2004) and Lowe, Rottman &
Linden (2004). Most generally the Froude number is a function of the depth of the
current relative to the depth of the ambient. When the ambient is much deeper than
the current, the Froude number adopts a constant value which Huppert & Simpson
(1980) measured experimentally to be 1.2 for flows in which the density difference
between the fluids is small. For non-Boussinesq flows, Grobelbauer et al. (1993) and
Lowe et al. (2004) have shown that the Froude number may take larger values and
for flows of liquid through air, such as ‘classical’ dam-break flow, the front is usually
identified as the position where h = 0 (Whitham 1974). This is equivalent to Fr → ∞.
In this study we will investigate the motion that occurs when Fr is constant and we
elucidate the different behaviours that occur for different values of Fr.

At this stage it is convenient to adopt dimensionless variables, scaling the height
of the current by h0, the x-coordinate by x0, the velocity by (g′h0)

1/2 and the time by
x0/(g

′h0)
1/2. Henceforth all variables are assumed to have been rendered dimensionless

according to these scales.
The system of hyperbolic governing equations (2.1)–(2.2) may be written in

characteristic form (Whitham 1974). Denoting the characteristic variables by

α = u + 2c, β = u − 2c, (2.7)

where c =
√

h, the system is given by

dα

dt
= 0 on

dx

dt
= u + c, (2.8)

dβ

dt
= 0 on

dx

dt
= u − c. (2.9)

Thus we deduce that the faster of the forward propagating characteristics with speed
u + c catch up with the front which has speed Fr c for all finite values of the
Froude number. This effect has been employed by some schemes for the numerical
integration of the governing equations to impose the boundary condition at the front
of the current (Bonnecaze, Huppert & Lister 1993; Hallworth et al. 1998). In the
limit Fr → ∞, we note that the trajectory of the front corresponds to the leading
characteristic.

In subsequent sections of this study, it is convenient to adopt hodograph variables.
Under this approach, x and t are treated as dependent variables that are functions of
the independent variables α and β . The characteristic form of the governing equation
then becomes

∂x

∂β
= 1

4
(3α + β)

∂t

∂β
on α = constant, (2.10)

∂x

∂α
= 1

4
(α + 3β)

∂t

∂α
on β = constant. (2.11)

This hodograph remains invertible provided the Jacobian, J , given by

J =
∂x

∂α

∂t

∂β
− ∂x

∂β

∂t

∂α
, (2.12)

is finite and non-zero. Importantly the transformation becomes non-invertible in
‘simple wave’ and ‘uniform’ regions, within which one, or both, of the characteristics
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take a constant value, respectively. Combining the hodograph equations, we find a
single equation for t(α, β) given by

∂2t

∂α∂β
=

3

2 (α − β)

(
∂t

∂α
− ∂t

∂β

)
. (2.13)

Thus we note that the hodograph transformation has yielded a linear governing
equation, and that this linearity can be exploited to find solutions of the nonlinear
shallow water equations (see, for example, Carrier & Greenspan 1957 and Carrier
et al. 2003). We may also transform the boundary conditions into the hodograph
plane. First the condition of no flow at rear of the lock (2.4) is given by

x = 0 on α + β = 0. (2.14)

The Froude number condition (2.5) is given by

dxN

dt
= 1

2
(α + β) on β = −λα, (2.15)

where λ = (2 − Fr)/(2 + Fr). Treating the front position and the time at the front, tN ,
as functions of the characteristic variables, the condition (2.15) may be rewritten to
give

∂xN

∂α
− λ

∂xN

∂β
= 1

2
α(1 − λ)

(
∂tN

∂α
− λ

∂tN

∂β

)
. (2.16)

Finally we note that provided there are non-trivial characteristics, this yields

α(1 + λ)

(
∂tN

∂α
+ λ

∂tN

∂β

)
= 0. (2.17)

Rather than impose the condition of no flow at the rear of the lock (2.14), we find
that it is simpler to treat the problem as symmetric around the line α + β = 0. Thus
we effectively consider back-to-back lock-releases, propagating in opposite directions.
This ensures that u = 0 at x = 0 and then the solution domain within the hodograph
plane is given by {(α, β) : β +λα � 0; α +λβ � 0}. This approach does not artificially
restrict the solutions that we construct, because if u = 0 at x = 0, then from (2.2)
∂h/∂x = 0. Thus solutions are continuously differentiable at x = 0.

Along α-characteristics, dx/dt > 0 for all values of α and β . Thus characteristic data
are always propagated along these curves from the rear to the front of the current.
Along β-characteristics dx/dt = (α+3β)/4 and so if α < −3β then it is possible for the
direction of characteristic data propagation to be reversed. However if β > 0 then there
is no position within the current where this may occur because α is always positive. At
the front of the current, β = −λα, and so we observe that if Fr > 2 then λ< 0 and this
implies that β at the front is positive. This means that for Fr > 2 we do not expect the
motion of the front to influence the dynamics at the rear of the current. Conversely
if Fr < 2 then we may find β-characteristics that propagate from front to rear and
there is the possibility for a wave-like disturbance to travel along the current, being
reflected at the front and at the back wall. We demonstrate in subsequent sections
that different phenomena are exhibited when Fr> 2 and when Fr < 2.

Finally we utilize the linearity of the governing partial differential equation (2.13)
to find the solution within a domain D in terms of boundary integrals. We find that∫

∂D
f · dx = 0, (2.18)
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where f (a, b; α, β) = −V â + U b̂, the integration is around a curve ∂D in the

hodograph plane such that dx = da â + dbb̂ and

U = − 3

2(a − b)
tB +

B

2

∂t

∂b
− t

2

∂B

∂b
, (2.19)

V =
3

2(a − b)
tB +

B

2

∂t

∂a
− t

2

∂B

∂a
. (2.20)

In these expressions, B(a, b; α, β) is the Riemann function that satisfies the adjoint
partial differential equation to (2.13) given by

∂2B

∂a∂b
+

3

2(a − b)

(
∂B

∂a
− ∂B

∂b

)
− 3B

(a − b)2
= 0, (2.21)

subject to the boundary conditions that

∂B

∂b
= − 3B

2(a − b)
on a = α,

∂B

∂a
=

3B

2(a − b)
on b = β, (2.22)

and B(α, β; α, β) = 1. In this case, the Riemann function is given by Garabedian
(1986):

B(a, b; α, β) =
(a − b)3

(a − β)3/2(α − b)3/2
F

[
3
2
, 3

2
; 1;

(a − α)(β − b)

(a − β)(α − b)

]
, (2.23)

where F denotes a hypergeometric function. It is possible to rewrite this hyper-
geometric function in terms of Legendre functions or of complete elliptic integrals of
the first and second kind, and this latter form is how the function will be evaluated
numerically when it is employed below.

3. Initial motion and the geometry of the characteristic plane
In this section we analyse the initial motion that results from lock-release conditions

and study the implications for the form of the characteristics. In particular, we identify
regions within the (x, t)-plane where both α and β take constant values, where one
of α or β is constant and where both α and β vary. We term these regions ‘uniform’,
‘simple wave’ and ‘complex wave’, respectively. While Abbott (1961) and Rottman &
Simpson (1983) have described some aspects of this structure and Ungarish (2005) has
analysed the initial motion when the ambient is stratified, in this study we demonstrate
how to calculate the boundaries between the regions and the solutions within them. We
find that the structure and geometry of the regions depends on Fr and we show below
that there are four separate cases to be considered, namely Fr → ∞, Fr = 2, Fr< 2
and Fr > 2. In this section we treat the initial development of the flow for arbitrary
value of Fr and show why there is a need to treat each of these cases separately. In
subsequent sections we present the complete solutions for each value of Fr.

Initially the motion is similar to dam-break collapse centred at x = 1 (Whitham
1974) or, noting the analogy between the shallow water equations and those that
model the one-dimensional motion of a compressible polytropic gas, the withdrawal
of a piston a constant speed (Stanyukovich 1960; Garabedian 1986). When the dam is
instantaneously removed there is a rarefaction wave, centred at x = 1 and the motion
is unaffected by the finite length of the lock until the first, rearward-propagating wave
has reached the rear of the lock (see figure 1). Initially u = 0 and c = 1 and so the
leading rearward-propagating characteristic has value β = −2 and its path is given by
x = 1 − t . Thus the rear wall of the lock begins to influence the motion when t = 1.



68 A. J. Hogg

1 2 3 4 5 60

2

4

6

8

10

12

x

t

S1

S2

C2

C1

U1
(xb, tb)

(x1, t1)

(x2, t2)

(xN, tN)

Figure 1. The geometry of the characteristic plane at short times after the release of the fluid
from behind the lock-gate. U1 denotes a uniform region within which α = 2 and β = βm; S1

and S2 simple wave regions within which α = 2, −2 � β � βm and β = βm, |βm| � α � 2,
respectively; and C1 and C2 denote complex wave regions within which α and β both vary.
Also plotted are characteristic curves that form boundaries between these regions. While these
domains were calculated for Fr = 1.2, this topology is typical for all Fr < 2. When Fr > 2, the
complex wave region C1 is unbounded.

From the initial conditions, all α-characteristics have the value α = 2 within the
simple wave region S1 (figure 1). In addition at the front of the current u = Fr c, and
thus

u =
2Fr

Fr + 2
and c =

2

Fr + 2
. (3.1)

This implies that the maximum value taken by the β-characteristics is β = βm, where

βm =
2(Fr − 2)

2 + Fr
, (3.2)

and that at x = 1 and t = 0, −2 � β � βm. Then we find that the β-characteristics
emanating from x = 1 are straight lines given by

x = 1 + 1
4
(2 + 3β)t (3.3)

and that within this region

u = 1
2
(2 + β) and c = 1

4
(2 − β). (3.4)

It is possible to find u and c as functions of x and t by substituting for β from (3.3).
The lead β-characteristic on which β = βm has equation

x = 1 +
2(Fr − 1)

2 + Fr
t, (3.5)

and henceforth we will denote this characteristic by the curve (x1, t1). Ahead of this
expansion fan there is a region within which the velocity and height fields are constant
and given by (3.1). The boundary of this uniform region U1 is the front of the motion
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given by

x ≡ xN (t) = 1 +
2Fr

2 + Fr
t. (3.6)

We reiterate that the structure of the solution is such that there is a rarefaction, or
expansion fan, centred on x = 1, with a uniform region ahead of it. The solution is
given by α = 2 and

β =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−2, x < 1 − t

1

3

(
4(x − 1)

t
− 2

)
, 1 − t � x < x1

2(Fr − 2)

2 + Fr
, x1 � x < xN.

(3.7)

We note that β = −2/3 at x = 1 provided Fr > 1 (cf. Klemp, Rotunno & Skamarock
1994; Shin et al. 2004). This solution remains valid until the leading backward-
propagating characteristic from the expansion reaches the rear boundary of the lock
(x = 0) at t = 1. Thereafter the flow becomes affected by the finite lock length. There
are two noteworthy features of this solution. First note that as Fr increases, the size
of the domain U1, within which there are uniform conditions, diminishes; in the limit
Fr → ∞, there is no longer a uniform region and the motion is always led by the
characteristic on which α = β = 2. Also note that the front position depends linearly
on time and that the linear progression remains unaltered until a forward propagating
characteristic from the rear of the lock catches up with the front.

The forward-propagating α-characteristic that forms the boundary between the
regions that are and are not affected by the finite extent of the lock may be readily
calculated and can be derived parametrically as xb(β) and tb(β) (see figure 1). This
curve emanates from x = 0 at t = 1 and corresponds to the characteristic α = 2.
Thus along this curve we find that

∂xb

∂β
= 1

4
(6 + β)

∂tb

∂β
, (3.8)

while in the expansion fan region we have established (3.3). Thus we find that

∂tb

∂β
=

3tb

4 − 2β
, (3.9)

which may be integrated subject to t = 1 and x = 0 when β = −2 to yield

tb =
8

(2 − β)3/2
and xb = 1 +

2(2 + 3β)

(2 − β)3/2
. (3.10)

These expressions are valid for −2 � β � βm. This characteristic curve leaves the
expansion fan when β = βm, at a location that marks the start of the boundary with
the complex wave region C1 (see figure 1). We denote this boundary by x1(α) and
t1(α), which is a continuation of the characteristic curve given by (3.5), now through
a region in which α varies, and find that

t1(2) = 8−1/2(2 + Fr)3/2 and x1(2) = 1 + 2−1/2(Fr − 1)(2 + Fr)1/2. (3.11)

We observe that, as indicated above, in the limit Fr → ∞, t1(2), x1(2) → ∞. Thus in
this limit the characteristic from the rear of the lock does not intersect the front.

Subsequent characteristics emanating from x = 0 have values of α less than 2 and
are no longer propagating through a simple expansion fan solution. To calculate the
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β = βm

α = β
(h = 0)

α = –λβ

α = β

(u = 0)
(α, β)

Figure 2. The hodograph plane: the dynamic Froude number condition holds along the line
α = −λβ , while the complex wave region C1 corresponds to |βm| � α � 2 and −2 � β � βm.
Integration along the line segments ( ) permits the solution to be derived within C1. In
this sketch Fr > 2.

solution in this region we employ the hodograph variables and integrate around a
rectangular boundary in the (α, β)-plane with vertices at (2, −2), (2, β), (α, β) and
(α, −2), as illustrated in figure 2. For this domain (2.18) becomes

0 =

∫ β

−2

U (2, b; α, β) db −
∫ α

2

V (a, β; α, β) da +

∫ −2

β

U (α, b; α, β) db

−
∫ 2

α

V (a, −2; α, β) da. (3.12)

Integration by parts and using the conditions along characteristics and the boundary
conditions for the Riemann function yields

t = B(2, −2; α, β). (3.13)

This expression is valid within a region that is bounded by the α = 2 characteristic
emanating from x = 0, (xb, tb), for which −2 � β � βm, and by a β = βm characteristic
that starts from t = t1(2) and x = x1(2). Integrating along the latter characteristic on
which t ≡ t1(α) = t(α, βm), we find that

x1(α) = x1(2) +

∫ α

2

1
4
(α + 3βm)

∂t1

∂α
dα. (3.14)

Thus given x1(α) and t1(α), we may deduce the geometry of the domain C1 within
the (x, t)-plane (see figure 1). In particular, we note that

x1(−βm) = 0 provided Fr < 2, (3.15)

but if Fr � 2, then x1, t1 → ∞ as α → βm (see the Appendix). Thus when Fr < 2 the
complex wave region, C1, is bounded as shown in figure 1, whereas for Fr � 2 it is
unbounded.
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We may also calculate the trajectory of xb, tb in the uniform region ahead of the
expansion fan to find the position where this characteristic intersects the front of the
flow. From this point there is another β-characteristic on which β = βm, which we
denote by x2(α) and t2(α), with the intersection with the front occurring when α = 2
(figure 1). For t > t1(2), the α = 2 characteristic is given by

xb − x1(2) = 1
4
(6 + βm)(tb − t1(2)), (3.16)

and so this intersects the front at

t2(2) = 2−1/2(Fr + 2)3/2 and x2(2) = 1 + 21/2Fr(Fr + 2)1/2. (3.17)

This is the first time at which the front of the current is affected by the finite extent of
the lock from which it was released. It may be interpreted as the end of the slumping
phase, defined by Rottman & Simpson (1983) and it marks the end of the period
during which the front of the current moves with a constant speed. The β = βm

characteristic generated from this point satisfies

∂x2

∂α
= 1

4
(α + 3βm)

∂t2

∂α
, (3.18)

and α-characteristics arriving at this location satisfy

x2 = x1 + 1
4
(3α + βm)(t2 − t1). (3.19)

Hence substituting for x2 and integrating, we find that

t2(α) = t1(α) +
8

(α − βm)3/2
and x2(α) = x1(α) +

2(3α + βm)

(α − βm)3/2
. (3.20)

4. Complete solutions for the flow
In § 3 we constructed the characteristics at relatively short times after the release

of the fluid from behind the lock gate, showing that there were domains in which the
flow was uniform in addition to simple wave and complex wave regions. The complete
flow solutions may be readily calculated, although, as will be demonstrated below, the
nature of the solutions depends upon the magnitude of Fr. Thus we analyse separate
cases in the following subsections, first dealing with the special cases Fr → ∞ (§ 4.1)
and Fr = 2 (§ 4.2), before analysing the somewhat more complicated regimes Fr< 2
(§ 4.3) and Fr > 2 (§ 4.4).

4.1. Fr → ∞
In the limit Fr → ∞, the structure of the characteristics in the (x, t)-plane is
considerably simplified and it is possible to derive the analytical solution for the
bounded dam-break flow in terms of known functions. There is no uniform region
ahead of the expansion fan centred on x = 1 and the α = 2 characteristic from the
rear wall, xb(t), never catches the front, xN = 2t + 1. Thus we may readily evaluate the
entire solution: for t < 1 and 1− t < x <xN and for t > 1 and xb < x <xN , we find that

α = 2 and β =
1

3

(
4(x − 1)

t
− 2

)
. (4.1)

For t > 1 and 0 <x <xb

t = B(2, −2; α, β), α + β > 0. (4.2)
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Figure 3. The characteristic curves when Fr → ∞, showing the α-characteristics ( )
for α = 0, 0.5, 0.75, 1.0, 1.5, 2.0 and the β-characteristics ( ) for β = −2.0, −1.5, −1.0,
−0.75, −0.5, 0, 0.5, 0.75, 1.0, 1.5, 2.0. Also plotted are the front, xN (t) and the boundary
between the complex and simple wave regions, xb(t).

We plot the characteristic curves in the (x, t)-plane in figure 3, while profiles of u(x, t)
and h(x, t) are plotted in figure 4. Note that the height and velocity fields remain
continuous but that their gradients are discontinuous at x = xb(t). This point marks
the foremost location at which the flow is affected by the presence of the rear wall
of the lock.

4.2. Fr = 2

When Fr = 2 the front corresponds to β = 0 and thus we find a rather different
configuration of characteristics in the (x, t)-plane: the front occurs within a simple
wave region, S2 and there is no complex wave region C2. Furthermore, as discussed
above and demonstrated in the Appendix, the complex wave region, C1, becomes
unbounded when Fr = 2.

The lead α = 2 characteristic intersects the front at (x2(2), t2(2)). Thereafter the
motion of the front is no longer linearly dependent on time, but rather is determined
from (2.16) and given by

∂xN

∂α
= 1

2
α

∂tN

∂α
, (4.3)

while α-characteristics in the simple wave region S2 have β = 0 and are given by

x = x1(α) + 3
4
α [t − t1(α)] . (4.4)

Thus we find that

tN (α) = 2t1(α) − 1

α3

∫ α

2

3a2t1 da (4.5)
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Figure 4. The height, h(x, t), and velocity, u(x, t), fields as functions of distance from the
rear lock wall, x, at t = 1, 2, 5, 10 when Fr → ∞. Also plotted as dashed lines are the initial
lock-release condition for h and the maximum velocity at the front, u = 2.

and

xN (α) = 1 + 3
4
αtN (α) − 1

2
αt1(α) − 1

4

∫ α

2

t1 da. (4.6)

We plot the characteristic curves in figure 5 and some velocity and height profiles in
figure 6. Note that at t = 5 parts of these profiles orginate from the complex wave
region, C1, the simple wave region, S2 and the uniform region, U1.

4.3. Fr< 2

When Fr < 2, we have demonstrated that the complex wave region C1 is bounded by
the characteristic curve (x1, t1) on which β = βm. Specifically we have shown that

x1(−βm) = 0 and t1(−βm) = B(2, −2; −βm, βm) ≡
(

8

−β3
m

)1/2

P1/2

(
−4 − β2

m

4βm

)
,

(4.7)
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Figure 5. The characteristic curves when Fr = 2, showing the α-characteristics ( ) for
α = 0.75, 1.0, 1.5, 2.0 and the β-characteristics ( ) for β = −2.0, −1.5, −1.0, −0.5. Also
plotted are the front, xN (t), the boundary between the complex and simple wave regions C1

and S1, xb(t) and the β-characteristics, x1(t) and x2(t) that bound the complex wave regions
C1 and emerge from the intersection of xb(t) and xN (t), respectively. The inset sketch depicts
the uniform, simple wave and complex wave regions.

where P1/2 is a Legendre function of order 1
2
. Importantly, recall that when Fr< 2,

βm < 0 and so these expressions are real-valued. A forward-propagating α-characteri-
stic emanates from this point, on which α = −βm, and we denote this curve by (x3, t3)
(figure 7). Through the simple wave region S2 it is given by

x3 = − 1
2
βm(t − t1(−βm)). (4.8)

It intersects with β = βm characteristic, (x2, t2), to form a boundary of the complex
region C2, which is analysed below. The β = βm characteristic continues beyond this
intersection to form a boundary of a region within which β = βm and α = −βm. We
denote this uniform region by U2 and find that the characteristic reaches x2 = 0 at
t2 = t1(−βm) + 16(−2βm)3/2. This is the first time at which characteristic data have
propagated from the back wall, been reflected at the front and then returned to the
back wall. This pattern of wave-like disturbances propagating along the entire length
of the current and reflected between the back wall and the moving front will be
continued throughout the subsequent motion. Indeed by considering the path of this
disturbance in the hodograph plane, it is straightforward to see that the forward-
propagating characteristics have value α = 2λn−1, while the backward-propagating
characteristics have value β = −2λn for the nth reflection (figure 8). It is also
noteworthy that within U2 the velocity vanishes.

Beyond the uniform region, U2, there is a simple wave region, S3, which is bounded
by an α = −βm characteristic. We denote this characteristic curve by (x4, t4) and
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Figure 6. The height, h(x, t), and velocity, u(x, t), fields as functions of distance from the
rear lock wall, x, at t = 1, 2, 5, 10 when Fr = 2. Also plotted as dashed lines are the initial
lock-release condition for h and the maximum velocity at the front, u = 1.

find that

t4(β) = t3(β) +
8

(−βm − β)3/2
and x4(β) = x3(β) +

2(−βm + 3β)

(−βm − β)3/2
, (4.9)

where t3(β) and x3(β) are the characteristic curve that bounds the complex wave
region C2 (see figure 7).

We now construct the solution within the complex wave region C2. In general
the solution at a point (α, β) is given by the following boundary integrals in the
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Figure 7. The characteristic curves when Fr = 1.2, showing the α-characteristics ( ) for
α = 1.0, 1.5, 2.0 and the β-characteristics ( ) for β = −2.0, −1.5, −1.0, −0.375, −0.25.
Also plotted are the front, xN (t), the β = −0.5 characteristics, x1(t) and x2(t) that bound the
complex wave regions C1 and C2, respectively and the α = 0.5 characteristics x3(t) and x4(t)
that bound the complex wave regions C2 and C3, respectively. The inset sketch depicts the
uniform, simple wave and complex wave regions.
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Figure 8. The hodograph plane for Fr = 1.2. Complex wave region C1 is bounded by the
characteristic β = βm, while complex wave region C2 lies in the region {(α, β) : α > −βm;
β >βm; α + λβ � 0}. Within both of these regions, evolution along α-characteristics is the
direction of increasing β , as indicated by the arrows.
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hodograph plane (figure 8):

0 = −
∫ α

2

V (a, βm; α, β) da +

∫ β

βm

U (α, b; α, β) db −
∫ −β/λ

α

V (a, β; α, β) da

+

∫ 2

−β/λ

(−V (a, λa; α, β) − λU (a, λa; α, β)) da. (4.10)

This expression may be integrated by parts to yield

t(α, β) = 1
2
B(−β/λ, β; α, β)t(−β/λ, β) + 1

2
B(2, βm; α, β)t2(2)

+

∫ α

2

(
∂t2

∂a
+

3t2

2(a − βm)

)
B(a, βm; α, β) da

+

∫ 2

−β/λ

1
2
t(a, −λa)

(
3FrB(a, −λa; α, β)

2a
− ∂B

∂a
− λ

∂B

∂b

)
da. (4.11)

However we have not yet computed the values of t(α, −λα), which are needed for the
evaluation of the last integral in (4.11). This corresponds to the times, tN , along the
front. Thus we must solve an initial problem to calculate t along the front (β = −λα).
We substitute β = −λα in (4.10) and using the boundary condition (2.17), deduce the
following integral equation for t(α, −λα):

t(α, −λα) = B(2, βm; α, −λα)t2(2) + 2

∫ α

2

B(a, βm; α, −λα)

(
∂t2

∂a
+

3t2

2(a − βm)

)
da

+

∫ 2

α

3FrBt

2a
− t

(
∂B

∂a
+ λ

∂B

∂b

)
da. (4.12)

This is an inhomogeneous Volterra equation of the second kind, which may be solved
numerically by iteration (Arfken & Weber 1995). Typically we achieved a converged
solution after 10 iterations. Next, having calculated t(α, −λα), we may use (4.11) to
find the solution throughout the whole domain. The values of x may also be readily
calculated. Given that x2(α) specifies x along the characteristics β = βm, it is then
possible to integrate forward along α-characteristics in the region C2. We note that
t(α, β) and x(α, β) are continuous across the boundary between S2 and C2, but that
their normal derivatives may not be continuous across this boundary.

We plot profiles of the velocity and height fields in figure 9. We note that the profile
at t = 20 contains contributions from the uniform region U2, the simple wave region
S3 and the complex wave region C2. At this time, and at other times when there are
contributions from the uniform region U2, the velocity vanishes close to the source
because α + β = 0.

4.4. Fr> 2

When Fr > 2 we have shown that x1, t1 → ∞ as α → −βm and thus the complex wave
region, C1, and the simple wave region, S2 are unbounded (see figures 1 and 10).
The complex wave region that includes the front, C2, is bounded on one side by the
characteristic x2(α) and t2(α) on which β = βm. Subsequent β-characteristics emerge
from the front and since at the front α = −λβ and λ< 0, as α decreases, so does β .
Thus in the hodograph plane, the direction of propagation along lines of constant
α in this region has reversed (figure 11). Equivalently, the Jacobian changes sign at
β = βm and so the hodograph plane develops a fold and the complex wave region C2

lies in the domain {(α, β) : β <βm; α − β > 0; β + λα > 0}.
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Figure 9. The height, h(x, t), and velocity, u(x, t), fields as functions of distance from the rear
lock wall, x, at t = 1, 2, 5, 10, 20, 26.92 when Fr = 1.2. Also plotted is the maximum velocity
at the front, u = 3/4 ( ). Note that at t = 1 and t = 2, the current attains the same
velocity and height throughout a region at the front (rendering the velocity profiles hard to
distinguish in this plot). Note also that at t = 20, u and ∂h/∂x vanish in a region close to the
rear of the lock.

The solution given by (4.11) and (4.12) is valid provided the hodograph
transformation remains invertible, which is equivalent to demanding that the Jacobian
remains finite, but non-zero. When Fr > 2, we find that this condition is not held;
specifically we find that the Jacobian vanishes within C2 at a point (α, β) = (α∗, βm),
where ∂t/∂β = 0. This implies that at this point the β-characteristics, emanating from
the front, intersect. Thus it is no longer possible to construct the solution from the
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Figure 10. The characteristic curves when Fr = 4, showing the α-characteristics ( ) for
α = 0.5, 1.0, 1.1677, 1.5 and the β-characteristics ( ) for β = −0.2, 0, 0.5. Also plotted
are the front, xN (t), the β = 0.667 characteristics, x1(t) and x2(t) that bound the complex wave
regions C1 and C2 and the shock, xs(t) ( ) , across which α and β are discontinuous. The
inset depicts the wave regions.

two integral equations, (4.11) and (4.12); rather the solution includes a discontinuity
(shock) as is elucidated below.

We may evaluate ∂t/∂β at β = βm from (4.11) and when Fr = 4, to find that(
∂t

∂β

)
β=2/3

= 0 = −54
√

3(15α − 16)

(3α − 2)3/2
+

∫ α

2

(
∂t1

∂α
+

3t1

2(a − 2/3)

)
∂B

∂β

(
a, 2

3
; α, 2

3

)
da.

(4.13)

Thence we find that ∂t/∂β = 0 at α ≡ α∗ = 1.168, for which t = 59.78.
The solution determined by the integration of (4.11) and (4.12) is valid in the region

{(α, β) : β <βm; α >α∗; β +λα > 0}. For α < α∗, there is a tear in the hodograph plane
and the solutions jump discontinuously from the simple wave region S2 within which
β = βm to the curve given by (αs, βs) as illustrated in figure 11. We now demonstrate
how to calculate this curve in the hodograph plane and thus elucidate the height and
velocity profiles that contain discontinuities.

In terms of the original dependent variables of the shallow water equations, if there
is a discontinuity at position xs(t), moving with speed s = dxs/dt , then across the
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Figure 11. The hodograph plane for Fr = 4. Complex wave region C1 is bounded by the
characteristic β = βm and within it the motion evolves so that the magnitude of β increases
along α-characteristics, as indicated by the arrows in (a). Within complex wave region C2,
the hodograph develops a fold and the motion now evolves so that β decreases along
α-characteristics, as indicated by the arrows in (b). At (α, β) = (α∗, βm) the hodograph
transformation becomes non-invertible. Thereafter a shock develops and the hodograph plane
develops a ‘tear’, as α and β jump discontinuously to αs and βs .

discontinuity the following dimensionless conditions hold:

[(u − s)h]
x+

s

x−
s

= 0 and
[
(u − s)2h + 1

2
h2

]x+
s

x−
s

= 0, (4.14)

where x+
s and x−

s denote the values of the variables ahead of and behind the
discontinuity, respectively. These conditions represent the conservation of mass and
momentum fluxes across the discontinuity. Therefore it is possible to relate the
hodograph variables ahead of the shock, αs, βs , to those behind the shock, α, βm, and
the shock speed, s. Although the independent variables of the hodograph plane jump
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discontinuously, both t and x are continuous, denoted by ts and xs , respectively, and
this continuity will be used to construct the solution.

In the region t � ts the characteristics reaching the shock initially emerge from the
simple wave region S2 within which β = βm. Hence we may parameterize the shock
speed and shock curve as functions of α. The characteristics reaching the shock are
given by

xs = x1(α) + 1
4
(3α + βm)(ts − t1(α)), (4.15)

while the position of the shock moves according to

dxs

dα
= s

dts

dα
. (4.16)

Hence eliminating xs between (4.15) and (4.16) yields

ts =
1

F (α)

[∫ α

α∗

(
1
2
(α′ − βm)

∂t1

∂α′ + 3
4
t1

)
F (α′)

1
4
(3α′ + βm) − s

dα′ + t(α∗)

]
, (4.17)

where

F (α) = exp

(
−

∫ α

α∗

3

3α′ + βm − 4s
dα′

)
. (4.18)

This expression implies that ts is determined as a function of the unknown shock
speed s.

When t > ts , we may calculate the solution by evaluating the boundary integrals in
(2.18) along the curve {C1 ∪ C2 ∪ C3 ∪ C4} in the hodograph plane, where C1 is the
portion of the shock curve (αs, βs), C2 is the line segment from (αs, βs) to (αs, β), C3

is the line segment from (αs, β) to (α∗, β), and C4 is the line segment from (α∗, β) to
(α∗, βm). Integrating by parts, we thus derive

t(αs, β) = B(α∗, βm; αs, β)t(α∗, βm) +

∫ βm

β

(
3t(α∗, b)

2(α∗ − b)
− ∂t

∂b

)
B(α∗, b; αs, β) db

+

∫ α

α∗

B(as, bs; αs, β)

[
3t(as, bs)

2(as − ba)
+

∂t

∂a

das

dα

]
+ t(as, bs)

∂B

∂b

dbs

dα
dα, (4.19)

where as = αa(α) and bs = βs(α). In this expression we may set β = βs and this yields
a second expression for ts . Since ts must be continuous across the shock we may solve
(4.17) and (4.19) simultaneously to deduce the shock speed s as a function of the
upstream characteristic variable α. In fact in our numerical computation of ts from
(4.19), we find it convenient to substitute for ∂ts/∂a from (4.17) and then to solve the
integral equation numerically by iteration.

Having found ts along the shock trajectory, it is then straightforward to calculate
t at interior points using (4.19). The position of the shock curve, xs , may be
calculated directly from (4.15) and x(α, β) may be computed by integrating along
α-characteristics. This completes the solution ahead of the shock. This method is valid
until the shock curve, which is moving forward less rapidly than the characteristics on
which β = βm, enters the complex wave region C1. Thereafter the conditions upstream
of the shock are determined from more complex expressions.

We plot the trajectory of the shock curve (αs, βs) in figure 11, showing how it deviates
from β = βm and creates a tear in the hodograph plane. In figure 10 we plot the
characteristics and shock trajectory in the (x, t)-plane. The α = 1.1677 characteristic
is the α-characteristic with the largest value of α that does not encounter the shock.
Finally we plot some snapshots of the height and velocity profiles (figure 12), noting
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Figure 12. The height, h(x, t), and velocity, u(x, t), fields as functions of distance from the
rear lock wall, x, at t = 5, 10, 20, 59.78, 80, 100 when Fr = 4. Also plotted is the maximum
velocity at the front, u = 4/3 ( ) .

that the discontinuity emerges at a relatively late time, t = 59.78, and that its
magnitude grows in time.

5. Summary and conclusion
We have modelled the motion of gravity currents and dam-break flows using

shallow water equations and have demonstrated how to calculate the motion that
results from the release of initially stationary fluid from behind a rapidly removed
lock gate. Such lock-release conditions have been important initial configurations
in both experimental and theoretical investigations of these flows. The key novel
contribution of this study is that we have developed solutions using analytical
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techniques, supplemented by simple numerical evaluations and quadrature, rather
than directly integrating the governing partial differential equations numerically. This
is possible by a transformation to hodograph variables, which linearizes the governing
equations. This approach offers many advantages. First it provides new insight into
these flows and indicates very clearly the different phenomena that arise for different
values of the Froude number at the front. However, it also provides a series of accurate
solutions against which results from the numerical integration of the shallow water
equations may be tested. This is valuable because the solutions feature moving fronts
and positions where the dependent variables, or their derivatives, are discontinuous
and both of these features pose some difficulties for many numerical schemes.

The results build upon and significantly extend previous analyses of these flows.
We now summarize some the key results. When Fr → ∞, Ritter (1892) was the first
to analyse dam-break flows from a lock of infinite length. The absence of a rear
wall at the end of the lock and the uniform initial conditions mean that throughout
the entire flow one of the characteristic variables remains constant and the motion is
given by an expansion fan, centred at the lock gate. For a lock of finite length, we find
that the interior dynamics are modified. There is a reflection from the rear wall that
propagates forward. However when Fr → ∞ this reflection does not reach the front
and the frontal speed is not modified from the dam-break result given by Ritter (1892).

When Fr is finite, the initial expansion fan is preceded by a uniform region and the
rear-wall reflection does catch up with the front. Differences in the ensuing motion
then arise depending on the magnitude of Fr relative to 2. For Fr < 2, forward-
propagating characteristics are reflected from the front and may propagate back to
the rear wall, before being reflected forwards again. This phenomenon of a wave-like
disturbance with successive reflections continues throughout the entire motion. For
Fr > 2 the characteristics reflected from the front are unable to propagate back to the
rear wall. Instead they remain localized to the front and eventually at relatively late
times lead to the formation of a shock, over which the velocity and height fields are
discontinuous. This behaviour has a complicated structure in the hodograph plane:
the plane develops a ‘fold’ at β = βm and then there is a ‘tear’ when the shock is
formed, as α and β jump discontinuously. Nevertheless, it is relatively straightforward
to construct the entire solution, as demonstrated above. Finally for the transitional
case, Fr = 2, the entire frontal region is associated with the characteristic value β = 0
and neither shocks nor successive reflections are found.

It is intriguing to compare these solutions and their structures in the hodograph and
characteristic planes with similarity solutions for gravity current flows of a constant
volume (Fannelop & Waldman 1972; Hoult 1972; Gratton & Vigo 1994). It has been
shown that these similarity solutions are linearly stable (Grundy & Rottman 1985;
Mathunjwa & Hogg 2006) and there is numerical evidence to suggest that they form
the intermediate asymptotics for gravity current motion, modelled by the shallow
water equations from lock-release initial conditions (Hogg, Ungarish & Huppert
2000). Gratton & Vigo (1994) report different forms of the solution, depending on
whether Fr is less than or exceeds 2. Here we may readily demonstrate this in terms
of the hodograph variables. The governing equation is given (2.13) with the boundary
condition at the front given by (2.17). In line with many similarity solutions, we do
not apply lock-release initial conditions, but merely demand that the volume of the
current is constant, which in dimensionless variables is given by∫ xN

xr

h dx = 1, (5.1)
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where xr is the rear of the current. If the current remains attached to the rear wall
then xr = 0 and u(xr, t) = 0, which is applied in the hodograph plane at α + β = 0.
Conversely if the back of the current moves away from the rear wall then h(xr, t) = 0,
which corresponds to α = β in the hodograph plane. First we note that the governing
equation and frontal boundary condition are satisfied if

t =
A

|αβ|3/2
+ B, (5.2)

where A and B are real-valued constants. For similarity solutions we set B = 0
because there cannot be an externally imposed time scale. The characteristic variable
α is always positive, but β could potentially range over positive and negative values.
When Fr < 2, λ> 0 and this means that the frontal boundary condition is applied to a
negative value of β . Thus we may only apply the condition at the rear wall, β = −α,
and after enforcing (5.1) find

t =
4(4 − Fr2)3/2

Fr(6 − Fr2)

1

(−αβ)3/2
and x = 3

4
(α + β)t. (5.3)

Conversely if Fr > 2, λ< 0 then the frontal boundary condition is applied to a positive
value of β . Thus we may only apply the condition at the moving rear point, β = α,
and after enforcing (5.1) find

t =
4(4 − Fr2)3/2

Fr
(
6 − Fr2[1 − (1 − 4/Fr2)]3/2

) 1

(αβ)3/2
and x = 3

4
(α + β)t. (5.4)

The intermediate case, Fr = 2, is degenerate and corresponds to

x = 3
4
αt and β = 0. (5.5)

These similarity solutions represent the motion of gravity currents with a constant
volume after a sufficient period so that initial conditions have become insignificant,
apart from the specification of the total volume released. We expect, therefore,
that they will represent the solutions from lock-release initial conditions in the
regime α, |β| 	 1. We note that the analytical framework and solutions developed
in this study may offer an opportunity to investigate in detail how flows approach
a self-similar regime from given initial conditions, without the need for numerical
computations. This may be a fruitful area for subsequent research.

There have been many laboratory realizations of gravity current flows generated
from lock-release initial conditions (see, for example, Huppert & Simpson 1980;
Rottman & Simpson 1983; Lowe et al. 2004). Rottman & Simpson (1983)
demonstrated that during the slumping phase, the front moved at a constant velocity
until it was caught up by a wave from the rear of the current, which arose from
the reflection of the initial rearward-propagating rarefaction. Thereafter the front
no longer moved at a constant speed, but decelerated and approached a self-similar
state. These observations are in qualitative agreement with the phenomena predicted
by this study. Rottman & Simpson (1983) find that the bore catches the front after
10 lock lengths; the present theory does not concur with this result, presumably
because the experimental flows were generated from locks that were of the same
depth as the ambient fluid. This means that the initial motion of the ambient cannot
be neglected and so the use of a single-layer shallow water model may not capture
quantitatively these experimental observations. This study has identified novel features
of gravity current flow, such as successive reflections of waves along the length of the



Lock-release gravity currents and dam-break flows 85

current when Fr < 2 and shock formation at late times when Fr > 2. These have not
yet been identified in laboratory experiments, the focus of which has usually been
measurements of the speed and flow structure at the front, or the motion during
relatively short times. However it would be of considerable interest to explore these
new phenomena experimentally.

Finally we observe that hodograph transformations and analysis similar to that
developed here may be useful for other flow scenarios. For example it is possible to
derive similar governing equations in the hodograph plane for drag-free inertial flows
on slopes, and the investigation of how these flows develop from prescribed initial
conditions is another interesting topic for future research.
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work with Richard Kerswell and thanks an anonymous reviewer for helpful comments.
The work was commenced while A. J.H. was a participant in the visitor programme,
Granular & Particle-laden Flows, at the Isaac Newton Institute (UK).

Appendix
In this Appendix we demonstrate that x1(−βm) = 0 provided Fr < 2. The calculation

follows from (3.14); after rewriting the hypergeometric function B(2, −2; α, β) in
terms of a Legendre function of order 1

2
and integrating by parts we find that

x1(−βm) = f (−βm), where f is defined by

f (β) ≡ 1 − 2

(−2β)1/2
P1/2

(
−4 − β2

4β

)
+

4

(4 − β2)1/2

∫ −(β2+4)/(4β)

1

P1/2(x)

(β + 2x)1/2
dx. (A 1)

We note that f (−2) = 0; this follows because the β = −2 characteristic from the
front of the lock gate intersects the wall at t = 1, or alternatively, one may evaluate
f directly from (A 1) as β → −2. Further we note that this expression becomes
unbounded as β → 0 and may only be evaluated for β < 0. Next we find that

df

dβ
=

1

(−2β3)1/2
P1/2

(
−4 − β2

4β

)
− 4 − β2

(−2β)1/22β2
P ′

1/2

(
−4 − β2

4β

)

+
4

(4 − β2)1/2

∫ −(β2+4)/(4β)

1

−P1/2(x)

2(β + 2x)3/2
+

4β

(4 − β2)3/2

∫ −(β2+4)/(4β)

1

−P1/2(x)

(β + 2x)1/2

+
(−2β)1/2

(β2)
P1/2

(
−4 − β2

4β

)
, (A 2)

where P ′
1/2 denotes the derivative of the Legendre function. This expression may be

simplified by noting the following identity:∫ −(β2+4)/(4β)

1

(
β

2(β + 2x)1/2
− 4 − β2

4(β + 2x)3/2

)
P1/2(x) dx

=

[
−(1 − x2)(β + 2x)1/2

(
P ′

1/2 − P1/2

β + 2x

)]−(β2+4)/(4β)

1

. (A 3)

Then substituting this identity into (A 2), we find that

df

dβ
= 0. (A 4)
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Using f (−2) = 0, we then deduce that f (β) = 0, provided β < 0 and hence x1(−βm)=0,
provided Fr < 2.
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